Solution of Nonlinear Fredholm-Volterra Integral Equations via Block-Pulse ‎Functions

Authors

  • F. Abbasi Department of Mathematics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
  • M. Mohamadi Department of Mathematics, Ayatollah Amoli Branch, Islamic Azad University, Amol, ‎Iran.
Abstract:

In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions are stable.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method

In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.

full text

Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse ‎functions

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.

full text

Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second ‎kind‎

Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...

full text

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

full text

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

full text

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 4

pages  327- 334

publication date 2020-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023